Hypoglycemia enhances ionotropic but reduces metabotropic glutamate responses in substantia nigra dopaminergic neurons.
نویسندگان
چکیده
It is widely accepted that energy deprivation causes a neuronal death that is mainly determined by an increase in the extracellular level of glutamate. Consequently an excessive membrane depolarization and a rise in the intracellular concentration of sodium and calcium are produced. In spite of this scenario, the function of excitatory and inhibitory amino acids during an episode of energy failure has not been studied yet at a cellular level. In a model of cerebral hypoglycemia in the rat substantia nigra pars compacta, we measured neuronal responses to excitatory amino acid agonists. Under single-electrode voltage-clamp mode at -60 mV, the application of the ionotropic glutamate receptor agonists N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, kainate, and the metabotropic group I agonist (S)-3,5-dihydroxyphenilglycine (DHPG) produced reversible inward currents in the dopaminergic cells. In addition, an outward current was caused by the superfusion of the metabotropic GABA(B) agonist baclofen. Glucose deprivation enhanced the inward responses caused by each ionotropic glutamate agonist. In contrast, hypoglycemia depressed the DHPG-induced inward current and the baclofen-induced outward current. These effects of hypoglycemia were reversible. To test whether a failure of the Na(+)/K(+) ATPase pump could account for the modification of the agonist-induced currents during hypoglycemia, we treated the midbrain slices with strophanthidin (1-3 microM). Strophanthidin enhanced the inward currents caused by glutamate agonists. However, it did not modify the GABA(B)-induced outward current. Our data suggest that glucose deprivation enhances the inward current caused by the stimulation of ionotropic glutamate receptors while it dampens the responses caused by the activation of metabotropic receptors. Thus a substantial component of the augmented neuronal response to glutamate, during energy deprivation, is very likely due to the failure of Na(+) and Ca(2+) extrusion and might ultimately favor excitotoxic processes in the dopaminergic cells.
منابع مشابه
Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat.
Metabotropic glutamate receptors (mGluRs) couple the actions of glutamate to intracellular second messenger systems through G-proteins. The mGluRs play an important role in the regulation of basal ganglia function. Ligand binding studies have revealed that the basal ganglia contain at least two pharmacological types of metabotropic binding sites. Agonists of mGluRs can affect both in vitro elec...
متن کاملActivation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia Nigra pars reticulata.
Loss of nigrostriatal dopaminergic neurons in Parkinson's disease (PD) leads to increased activity of glutamatergic neurons in the subthalamic nucleus (STN). Recent studies reveal that the resultant increase in STN-induced excitation of basal ganglia output nuclei is responsible for the disabling motor impairment characteristic of PD. On the basis of this, it is possible that any manipulation t...
متن کاملRegulation of the nigrostriatal pathway by metabotropic glutamate receptors during development.
Dopamine neurons in the substantia nigra heavily innervate the striatum, making it the nucleus with the highest levels of dopamine in the adult brain. The present study analyzes the time course and the density of striatal innervation by nigral dopamine neurons and characterizes the role of the neurotransmitter glutamate during the development of the nigrostriatal pathway. For this purpose, orga...
متن کاملDopamine neuron responses depend exponentially on pacemaker interval.
Midbrain dopamine neuron activity results from the integration of the responses to metabo- and ionotropic receptors with the postsynaptic excitability of these intrinsic pacemakers. Interestingly, intrinsic pacemaker rate varies greatly between individual dopamine neurons and is subject to short- and long-term regulation. Here responses of substantia nigra dopamine neurons to defined dynamic-cl...
متن کاملIntracellular sodium and calcium homeostasis during hypoxia in dopamine neurons of rat substantia nigra pars compacta.
We investigated the hypoxia-induced disturbance of cytosolic sodium concentration ([Na+]i) and of cytosolic calcium concentration ([Ca2+]i) in dopamine neurons of the substantia nigra pars compacta in rat midbrain slices, by combining whole cell patch-clamp recordings and microfluorometry. Transient hypoxia (3-5 min) induced an outward current (118.7 +/- 15.1 pA, mean +/- SE; VH = -60 mV). The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 85 3 شماره
صفحات -
تاریخ انتشار 2001